Amplitude and frequency modulation control of sound production in a mechanical model of the avian syrinx.
نویسندگان
چکیده
Birdsong has developed into one of the important models for motor control of learned behaviour and shows many parallels with speech acquisition in humans. However, there are several experimental limitations to studying the vocal organ - the syrinx - in vivo. The multidisciplinary approach of combining experimental data and mathematical modelling has greatly improved the understanding of neural control and peripheral motor dynamics of sound generation in birds. Here, we present a simple mechanical model of the syrinx that facilitates detailed study of vibrations and sound production. Our model resembles the 'starling resistor', a collapsible tube model, and consists of a tube with a single membrane in its casing, suspended in an external pressure chamber and driven by various pressure patterns. With this design, we can separately control 'bronchial' pressure and tension in the oscillating membrane and generate a wide variety of 'syllables' with simple sweeps of the control parameters. We show that the membrane exhibits high frequency, self-sustained oscillations in the audio range (>600 Hz fundamental frequency) using laser Doppler vibrometry, and systematically explore the conditions for sound production of the model in its control space. The fundamental frequency of the sound increases with tension in three membranes with different stiffness and mass. The lower-bound fundamental frequency increases with membrane mass. The membrane vibrations are strongly coupled to the resonance properties of the distal tube, most likely because of its reflective properties to sound waves. Our model is a gross simplification of the complex morphology found in birds, and more closely resembles mathematical models of the syrinx. Our results confirm several assumptions underlying existing mathematical models in a complex geometry.
منابع مشابه
Mathematical Modelling of Sound Production in Birds
In this thesis, the physics of birds phonation is discussed using a two-mass models approach and the theory of nonlinear dynamics. Two-mass models of the human larynx (rescaled two-mass model and trapezoidal model) have been adapted to the dimension of the avian syrinx to study pressure onset, control of harmonic overtones and “registers” of the sound radiated by the birds vocal organ (syrinx) ...
متن کاملSyringeal Specialization of Frequency Control during Song Production in the Bengalese Finch (Lonchura striata domestica)
BACKGROUND Singing in songbirds is a complex, learned behavior which shares many parallels with human speech. The avian vocal organ (syrinx) has two potential sound sources, and each sound generator is under unilateral, ipsilateral neural control. Different songbird species vary in their use of bilateral or unilateral phonation (lateralized sound production) and rapid switching between left and...
متن کاملBilateral syringeal interaction in vocal production of an oscine bird sound.
The vocal organ, or syrinx, of oscine birds has two parts, each of which has generally been presumed to operate independently of the other. A significant counter-example is now demonstrated in the production of a common vocalization by the black-capped chickadee (Parus atricapillus), in which the two acoustic sources interact in a nonlinear fashion. This bird produces a sound with multiple freq...
متن کاملBiomechanics and control of vocalization in a non-songbird.
The neuromuscular control of vocalization in birds requires complicated and precisely coordinated motor control of the vocal organ (i.e. the syrinx), the respiratory system and upper vocal tract. The biomechanics of the syrinx is very complex and not well understood. In this paper, we aim to unravel the contribution of different control parameters in the coo of the ring dove (Streptopelia risor...
متن کاملSound production in the collared dove: a test of the 'whistle' hypothesis
The mechanism of sound production in the collared dove Streptopelia decaocto was studied to test the validity of the 'whistle' model and to analyze the role of vocal tract resonances. In this study, the vocalizations of six male adult doves were recorded both in normal air and in a mixture of 80 % helium and 20 % oxygen (heliox). Depending on the way in which the syrinx operates, the spectral s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 212 Pt 8 شماره
صفحات -
تاریخ انتشار 2009